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PREFACE 
 

In 2013 Paige Williams asked, “Why do we stop growing?” In her answer she noted, 

“It’s in our genes, but how they exert this control is a mystery”. 

In the report, which appeared on NBC News, Williams acknowledged that Dr Scott 

A. Rivkees, a professor of paediatric endocrinology at Yale school of Medicine, had 

come to the conclusion that we were “just starting to understand the growth-promoting 

and growth-inhibiting factors of organs”. 

Earlier findings by Slack (1999), as detailed in his book “On Growth and Form: Spa-

tio-temporal Pattern formation in Biology”, led to three very interesting questions as-

sociated with growth: 

(1) What controls the absolute size of the whole, or why are we bigger than mice? (2) 

Within a whole, what maintains the constancy of proportions of individual parts? (3) 

How is a possible change of relative proportions (allometry) produced? 

In Geraert (2004) several answers are given in an article titled, “Constant and contin-

uous growth reduction as a possible cause of ageing”. In another article called, “A 

quadratic approach to allometry yields promising results for the study of growth”, 

Geraert (2016) reflects on the mathematics of differential growth. A study on human 

growth based on data obtained in Belgium from the XIXth century was subsequently 

added to the literature (Geraert, 2018). These articles together with selected papers 

written on the growth of nematodes form the basis of this book. 

The aim is to show the reader that the growth questions above have been answered. 

Studies of various animals (worms, arthropods, vertebrates) have showed one and the 

same phenomenon – and the human being presents no exception. As Needham (1964) 

already concluded, “It may be taken as established that growth is fundamentally sim-

ilar in all organisms”. 
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Simple mathematics explain and predict growth – not only growth, but also the entire 

life cycle. 

Some of the working titles of this book included “Ageing starts at birth”, “Constant 

and continuous growth reduction is the cause of ageing”, “Growth is never exponen-

tial” and “The Laws of Growth”. 

In general, growth is not well understood. Having studied this complex phenomenon 

for years, I have come to the conclusion that growth is not time-dependent but rela-

tion-dependent. In other words, growth depends on the relationship between several 

parts of an organism. 

I would like to thank Dr G. Packard (Colorado, USA) for mentioning Needham (1957) 

and the anonymous reviewer of Geraert (2018) for his interesting remarks. 

Cited in Needham (1964) “The Growth Process in Animals” 

“… our birth is nothing but our death begun …” 

(From the poet Edward Young in “Night Thoughts”). 
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INTRODUCTION 
 

Growth occurs equally well in unicellular and multicellular organisms. It is only in 

multicellular organisms that growth can be considerable; these organisms die, so mul-

ticellularity is only temporarily an advantage. The general idea is that growth starts 

exponentially (Huxley, 1924) until adulthood, and then unicellular offspring are made 

and only afterwards, ageing starts. Some presume that ageing is caused by the activity 

of special genes that were not active during growth. If these ageing genes were to be 

stopped, the adult would remain young and vigorous. Exponential growth means 

growth without restrictions. If, however, we consider that multicellularity in itself 

could cause problems, we might as well assume that the restrictions start at the very 

beginning. When a zygote divides, the many cells become slightly different. Every 

cell has its own metabolism: some products of each cell positively or negatively in-

fluence the metabolism of each other cell. As a consequence, a multicellular organism 

produces various growth-promoting and growth-inhibiting substances influencing the 

growth patterns. 

To simplify the study of the three-dimensional and complicated growth patterns, it is 

customary to measure only some distances (or other data) and to compare the meas-

urements. By putting observed values of a growth pattern in an arithmetic graph, 

curved lines are often found. The nature of the curve has been a subject of controversy 

for years. Huxley (1924) proposed a power curve. As this curve was not able to ex-

plain why growth stops, several other curves and variants have been introduced (see 

the review in Zeger and Harlow, 1987 for the curves known then). Some of the curves 

describe growth patterns that differ from what is studied here. For example, West et 

al. (1997, 2001) argued for fractional power laws on the basis that the limiting factor 

in growth was the formation of branching trees of the circulatory system and that this 

had an essentially fractal dimensionality. 
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MATHEMATICAL APPROACHES TO DIFFERENTIAL 
GROWTH 

 

When growth is studied by comparing the measurements of two body parts over time 

a curved line is usually observed.  

To decide which curve should be used, it has been found helpful to obtain scatter 

diagrams of transformed variables. To facilitate this, researchers use special graph 

paper for which one or both scales are calibrated logarithmically, referred to as semi-

log or log-log graph paper, respectively.  

One can also use arithmetic graph paper and untransformed variables.  

The process of curve fitting has the disadvantage that different observers present dif-

ferent curves and equations, so there is a need for a theoretical understanding of 

growth. 

The power curve theory 
 

Huxley’s (1924) assumption was that for a theoretical small amount of growth there 

was a constant ratio between the two growth rates of body part y and body part x. 

dy/dx = constant k         (1) 

 

This resulted in the formula of allometric growth, first used by Snell (1891) 

y = bxk                            (2) 

b and k being constant factors. This formula can also be written 

log y = log b + k log x     (3) 
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The curvilinear relationship (2) is linearised when the data are plotted on a log-log 

scale. The slope of that line is represented by the power factor k (known as the al-

lometric coefficient) and log b is the intercept of the line on the y-axis. 

The study of growth has been greatly influenced by Huxley’s proposal, although 

doubts have also been expressed. The results on log-log graph paper often show not 

one single straight line, but two to three consecutive straight lines. These observations 

have been explained by “sudden changes” in the allometric constant k, which have 

casted some doubt on the allometric formula (Ford & Horn, 1959 considered them as 

“methodological artefacts”). Several other formulas have been proposed, a review of 

which can be found in Zeger & Harlow (1987). The main point is that Huxley’s curve 

did not consider that differential growth was size related. 

As Kidwell & Williams (1956) noted: “Huxley (1924) suggested that this equation 

might express a general law of differential growth. Later (Huxley, 1932), in an attempt 

to establish a theoretical basis for the equation as a biological law, he derived the 

formula on the basis of assumptions about growth in general. A number of investiga-

tors have postulated different hypotheses to account for the allometric equation as a 

fundamental biological law of growth, but none has withstood critical analysis. It must 

be concluded that no satisfactory theoretical basis has yet been found for simple al-

lometry.” 

Recent publications on that matter are for example, Stern & Emlen (1999), Gayon 

(2000), Knell et al. (2004), Shingleton (2010) and Packard (2012). 

The parabola theory 
 

In 1978 and 1979 I published several articles on growth and form in nematodes. I 

realised that the curves I obtained (when differential growth was studied) fitted best 

with parabolic curves. No theoretical explanation was given at that time, but I revisited 

my findings later on in Geraert (2004). 

10 
 

When we compare the growth of one body part in relation to another body part, we 

have to take into account that the growth of these two body parts is mutually controlled 

(the more so if the two body parts are functionally related to each other). This means 

that each additional amount of growth of one body part depends on the additional 

amount of growth of another body part with which it can be compared. 

When we express the additional amount of growth in body part x as Δx and in body 

part y as Δy, we can translate the slight and gradual changes in shape during growth 

into slight and gradual changes in Δx and Δy. When these changes have a regular 

character, as they usually do, we can suppose that a constant Δx provokes a constantly 

smaller or larger Δy or for each Δx = 1, Δy2 – Δy1 = 2a (a = constant factor). The 

resulting growth relation between x and y will be a quadratic parabola because for this 

curve “the second differences remain constant” (Batschelet, 1975). This curve can be 

written as 

y = a.x² 

when the vertex is at the origin, or as 

y = a.x2 + b.x + c 

when the vertex is not at the origin 

The values b and c in this formula have a mathematical meaning, not a biological one; 

they are needed to position the curve in a diagram. The important factor is the quad-

ratic factor a. It can have a positive or negative sign. When the sign is negative it 

shows that the increase in the y-value decreases and its size shows exactly the degree 

of change in the growth of body part y relative to x (multiplied by two it gives the 

exact value of the second growth difference in y for one unit of x). When, during 

growth, factor a is very low, the curves approach a straight line. 

By using this formula, we assume that measurement y is the dependent variable and 

x the independent variable, but growth in general is more complicated. Moreover, the 
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given measurements are probably not taken along the important growth axes. Never-

theless, the negative sign of a in various comparisons indicates why growth stops, 

namely, because the growth of one body part is constantly and negatively influenced 

by the growth of another body part. This does not happen suddenly or after some 

growth has occurred – it starts from the very beginning. Therefore, I hypothesise that 

when growth starts, a very precise growth pattern ensues that cannot be changed. 

 

Fig. 1. When the growth relation between y and x is of the form y = -0.25 x² + 2.75 x 

then for a constant difference of x = 1 the second difference in y = -0.5. This is twice 

the quadratic factor of -0.25. In this theoretical example, factor c = 0 and so the par-

abolic curve goes through the origin (courtesy of Biologisch Jaarboek Dodonaea). 

 

 

12 
 

MATHEMATICS OF THE QUADRATIC EQUATION 

For the values x1 and y1 the quadratic equation reads as follows 

y1 = a.x1² + b.x1 + c 

When one unit is added to x1, the result is y2. 

y2 = a.(x1 +1)² + b.(x1 + 1) + c 

y2 = a.(x1² + 2.x1 + 1) + b.(x1 + 1) + c 

y2 = a.x1² + a.2.x1 + a + b.x1 + b + c 

The difference between y2 and y1 is Δy1. 

Δy1 = y2 – y1 = a.x1² + a.2.x1 + a + b.x1 + b + c – a.x1² - b.x1 – c 

Δy1 = a.2.x1 + a + b 

When 2 units are added to x1, the result is y3. 

y3 = a.(x1 + 2)² + b.(x1 + 2) + c 

y3 = a.x1² + a.4.x1 + a.4 + b.x1 + b.2 + c 

The difference between y3 and y2 is Δy2 . 

Δy2 = y3 – y2 =  a.x1² + a.4. x1 + a.4 + b.x1 + b.2 + c – a.x1² - a.2.x1 –a – b.x1 – b – c 

Δy2 =  a.3 + a.2.x1 + b 

The second difference is between Δy2 and Δy1. 

Δy2 –Δy1 = a.3 + a.2.x1 + b – a.2.x1 – a  – b 

Δy2 – Δy1 = 2.a 
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EARLIER DISCOVERIES 

The study of differential growth in the abdomen of the female pea-crab, Pinnotheres 

pisum Leach, brought Needham (1950, 1957) to the conclusion that “For purely em-

pirical purposes a general polynomial relation was fitted to the measurements, but the 

quadratic proved a very good fit”. Later, in his book on growth (Needham, 1964) he 

interpreted his discovery thus: “For simple comparative purposes, without theoretical 

implications, the fitting of the best polynomial relation has been advocated, largely 

because it is mathematically easy to manipulate”. 

The arithmetic parabola was also used by Kidwell & Howard (1970), Martin (1960) 

and Walker & Kowalski (1971), whereas Cuzin-Roudy & Laval (1975) adopted the 

logarithmic parabola for their findings. It is interesting to know that every one of these 

authors stressed that his discovery was arbitrary and had no biological meaning. 

 

Conclusion 
 

The quadratic equation provides the most suitable answer to questions about several 

differential growth processes because the curve reflects the result of mutually con-

trolled growth processes. Depending on size and function, mutual control creates a 

gradual change in shape; the more constant these changes between body parts are, the 

more the observed measurements will match a calculated parabola.  

Huxley’s allometric growth formula (the expression of a non-size-related change in 

shape) was not suitable for the differential growth studies I checked. 

  

14 
 

THE RESTUDY OF HUXLEY’S MATERIAL 
 

1. The case of Carcinus maenas 
 

Huxley & Richards (1931) compared the increase in the width of the abdomen with 

the increase in carapace length of the shore crab Carcinus maenas. The sample was 

split into three categories: unsexables, females and males. Huxley (1932) gave the 

measurements for the unsexables and the females using abdomen breadth for y and 

carapace length for x (both in mm).  

I calculated the quadratic equation between both (Fig. 2) thus 

y = 0.0039 x² + 0.2685 x - 0.467 

For each 10 mm increase in carapace length (= x) the abdomen breadth (= y) shows a 

constant secondary increase of 0.78 mm (this is twice the quadratic factor). 

Huxley (1932) did not find the single straight line needed to support his theory in the 

case restudied here. The logarithmic plotting showed a kink in the observations for 

females as well as for males, so different growth coefficients were observed for 

younger and older specimens. Huxley (1932) gave several k-values (added on Fig. 3) 

that he experimentally derived from his figure. Moreover, the constant b was not 

given. Therefore, it is not possible to compare his (several) equations with the single 

quadratic equation I obtained. The straight lines found by Huxley (1932) in his log-

log diagram (Fig. 3) can be interpreted as mathematical accidents. However, Fig. 2 

suggests another three consecutive straight lines, which are also mathematical acci-

dents but on an arithmetic diagram. 

Fig. 2. Comparison of carapace length to abdomen breadth in the shore crab Carcinus 

maenas. The measurements given in Huxley (1932) are represented on a double arith-

metic scale (and not on a log-log scale). The open circles are the measurements for 
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EARLIER DISCOVERIES 
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the unsexed specimens and for the adult females of the shore crab. The calculated 

quadratic parabola is added. (courtesy of Belgian Journal of Zoology). 

 

 

16 
 

Fig. 3. Figure taken from Huxley (1932) with the following explanation: “Increase of 

width of abdomen with increase of carapace length in the shore crab, Carcinus mae-

nas, logarithmic plotting”. The signs for unsexables, males and females are explained 

on the graph. The growth coefficients given by Huxley (1932) were also added. (cour-

tesy of Belgian Journal of Zoology). 

Studying the relationship between abdomen breadth and carapace length with a dif-

ferent approach yielded more interesting results (Fig.4), namely, by considering the 

carapace length (= y) as dependent on the abdomen breadth (= x). The formula is as 

follows 

y = -0.0375 x² + 2.917 x + 2.483 

For each 1 mm increase in the abdomen breadth (= x) there is a constant secondary 

decrease of 0.075 mm in the carapace length (this is twice the quadratic factor). There-

fore, the growth in length of the carapace is negatively influenced by the growth in 

width of the abdomen. 

 

Fig. 4. Comparison of carapace length and abdomen breadth in the shore crab Car-

cinus maenas. The measurements for the unsexed specimens and for the adult females 

are given. The calculated quadratic parabola is added. 
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Fig. 5. Dorsal and ventral view of the shore crab with indication of the carapace 

length and the shape of the abdomen. 
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2. The case of Cyclommatus tarandus 

 

Fig. 6. Female (A) and five different sized males (B1-B5) of the stag beetle, Cyclom-

matus tarandus, drawn to scale to show the change in form and relative size of the 

male mandible with the increase of absolute body size. 

Huxley (1927, 1932) studied the growth increase of the mandibles in several species 

of the Lucanidae, stag beetle. He used the measurements of Dudich (1923) for Cy-

clommatus tarandus (Thunberg, 1806). In this case y = mandible length in mm and x 

= body length + mandible length also in mm. 

I calculated the quadratic equation between both. 

y = -0.0011 x² + 0.71 x –11.41 
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